Hass, Weir and Thomas: Section 3.9, Exercise 24.

We are given a conical filter 6 inches high and with base a circle with diameter 6 inches and a cylindrical coffeepot with a 6 inch diameter circle as the base. Coffee is draining from the conical filter into the cylindrical coffeepot at the rate of $10 \text{ in}^3/\text{min}$.

- 1. How fast is the level in the pot rising when the coffee in the cone is 5 in deep?
- 2. How fast is the level in the cone falling when the coffee in the cone is 5 in deep?

In our discussion in class we had the setup to solutions for both parts of this problem but hadn't finished up. Here are the details.

- Let L denote the level of coffee in the filter.
- Let P denote the level of coffee in the pot.
- The volume of coffee in the pot is $V_P = \pi (3)^2 P = 9\pi P$

1. So
$$\frac{dV_F}{dt} = 9\pi \frac{dP}{dt}$$

- The volume of coffee in the filter is $V_F = \frac{1}{3}\pi \left(\frac{L}{2}\right)^2 L = \frac{\pi}{12}L^3$ (we used similar triangles to find this volume see your notes from class.)
- We are given that $\frac{dV_F}{dt} = -10$ in³/min (a minus sign since the coffee is draining out)
- We deduced that $\frac{dV_F}{dt} = -\frac{dV_P}{dt}$ for all t
- 1. For the first part of the problem, we are asked to find $\frac{dP}{dt}$ when L = 5 which we do be relating P and V_P .
 - (a) $V_p = 9\pi P$

(b)
$$\frac{dV_P}{dt} = 9\pi \frac{dP}{dt}$$

- (c) Note that $-10 = \frac{dV_F}{dt} = -\frac{dV_P}{dt} = -9\pi \frac{dP}{dt}$
- (d) So $\frac{dP}{dt} = \frac{10}{9\pi}$ in/min at every time t including the time when L = 5.
- 2. For the second part of the problem we need to relate L and V_F which we do by using $V_F = \frac{\pi}{12}L^3$

(a) So
$$\frac{dV_F}{dt} = \frac{3\pi}{12}L^2\frac{dL}{dt}$$
 which gives us
(b) $-10 = \frac{dV_F}{dt} = \frac{\pi}{4}L^2\frac{dL}{dt}$ and plugging $L = 5$ into this we get
(c) $-10 = \frac{\pi}{4}(5^2)\frac{dL}{dt}\Big|_{L=5}$
(d) So $\frac{dL}{dt}\Big|_{L=5} = -\frac{10}{25} \cdot \frac{4}{\pi} = \frac{8}{5}\pi$ in/min